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A new approach to quantize gravity based on the notion of differential algebra 
is suggested. It is shown that the differential geometry of this object cannot be 
described in terms of points. A spatialization procedure giving rise to points by 
losing part of the entire structure is discussed. The counterparts of the traditional 
objects of differential geometry are studied. 

FOREWORD 

In general relativity an event in spacetime is idealized to a point of  a 
four-dimensional manifold. Such idealization is adequate within classical 
physics, but is unsatisfactory from the operationalistic point of  view. In 
quantum theory the influence of a measuring apparatus on the object being 
observed cannot in principle be removed. We could expect the metric of  a 
quantized theory to be subject to fluctuations, whereas the primary tool to 
separate individual events is just the metric. Thus a sort of smearing procedure 
for events is to be imposed on the theory. 

An essential step in this direction was the idea to build the differential 
geometry in terms of abstract algebras. Geroch (1972) proposed to generalize 
the notion of algebra of  smooth functions on a manifold to that of  Einstein 
algebra whose elements are not yet functions. This generalization was suc- 
cessful, since the entire content of  general relativity can be reformulated in 
such a way that the underlying spacetime manifold is used only once: to 
define the collection of smooth functions. 

However, since the commutative case is considered, the absence of points 
is, roughly speaking, an illusion. As a matter of  fact, a commutative algebra 
can always be represented by functions on an underlying space. Such a 
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representation is, for instance, the Gel'fand construction (for normed algebra), 
which is the special case of the representation of commutative algebra on its 
spectrum. So, in the case of the commutative algebra, points implicitly exist. 
We consider this in more detail in Section 2. 

The goal of this paper is to essentially remove points from the theory. 
Metaphorically speaking, instead of smearing out of events, we smear them 
off. This happens automatically when we pass to noncommutative Einstein 
algebras, whereas the reproduction of geometrical constructions causes a 
number of purely mathematical obstacles. The analysis of these problems is 
concluded by an example of a finite-dimensional noncommutative Einstein 
algebra (Section 8). 

1. POINT-FREE APPROACH TO DIFFERENTIAL G E O M E T R Y  

The emphasis of this section is the observation that the standard coordi- 
nate-free approach to the differential geometry of smooth manifolds can be 
thought of as (or converted to) point-free. 

The basis of the differential geometry is the notion of vector field. It is 
known that any vector field v can be associated with the differential operator 
in the algebra ~ of smooth functions on the manifold acting as the derivation 
along this vector field. This operator v is linear, and its main feature is the 
Leibniz rule: 

v(ab) = v(a)b + av(b) (1.1) 

It is known that linear operators in ~ satisfying (1.1) are exhausted by that 
induced by actions of vector fields. That is why the difference is not drawn 
between such operators and vector fields: this is the essence of the coordinate- 
free account of differential geometry. As a matter of fact, coordinates appear 
only once: to specify the algebra ~ of smooth functions, since the notion 
of smoothness is referred to local maps. The forthcoming notions such as 
connection, torsion, curvature, and others need no local coordinates in 
their definition. 

We emphasize that at the mere level of definitions the principal notions 
of differential geometry require no coordinates, nor even points: the fact that 

is the algebra of functions on a set is never used. Thus the global geometry 
per se does not confine us to a set-theoretic concept of space. 

2. TOWARD NONCOMMUTATIVITY 

In this section we analyze the obstacles arising in the noncommutative 
generalization of the algebraic construction of differential geometry. 
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Basic Algebra. The first question is, why are we going to fetch noncom- 
mutativity to geometry? The rough answer is that we follow the tradition of 
quantization. An amount of noncommutativity in the geometry itself is needed 
to quantize it. This produces the following problem: the lack of points in 
this quantum geometry requires a "spatialization" procedure to be imposed 
onto the general scheme to describe the observable entities. 

We shall start with an associative and, in general, noncommutative 
algebra ~ over real numbers, which will play a role analogous to that of the 
algebra of smooth functions. It will be called the basic algebra of the model. 

Spatialization Procedure. Let us try to extract the geometry from the 
basic algebra ~/ on its coarsest level, that is, the set-theoretic one. As is 
usually done, we must consider the elements of ~ as functions defined on 
a certain set M, and perhaps taking values in a noncommutative domain R. 
That is, the representation of ,~ by means of  homomorphism ^ is introduced: 

a ~  

where fi is a function M --~ R. Thus each point m E M is associated with 
the two-sided ideal I(m) C ~:  

I(m) = {a ~ ~la(m) = 0} 

Now we see that the resources of spatialization are bounded by the 
number of two-sided ideals in ~ .  If ~ contains two-sided ideals, it can be, 
as a rule, decomposed into mutually commuting components. So, each point 
can be associated with at least a simple component of the decomposition of 
~ .  The conclusion is that spatialization and noncommutativity are in some 
sense complementary: commutation relations cannot be described in terms 
of points. 

When the basic algebra ,~ is commutative and satisfies some additional 
requirements (is a Banach algebra), the proposed construction is just the 
Gel ' land representation endowing the set M by a natural topology. So, the 
commutative case makes it possible to store the topological space M so that 
,~ is represented by continuous functions on M. However, the Gel 'fand 
construction does not yield the differential structure for M. 

Differential Structure. The lack of points is not an obstacle to introducing 
differential structure with all its attributes. As in the commutative case, it is 
introduced in terms of  the collection D e r ~  of derivations of the basic algebra 
~ .  Recall that a derivation of ~ is the linear mapping v: ~ / ~  ~ obeying 
the Leibniz rule (i.1). D e r ~  is the Lie algebra over ~t with respect to 
the commutation 

[u, v]a = u(va) - v(ua) 
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Scalars. In the commutative case we can multiply a vector by any 
element of the basic algebra s~. In general, an element v e DerN multiplied 
by an element a e sg does not obey the Leibniz rule. However, to define 
such objects such as, say, a connection, multiplicators are necessary: they 
play the role of  scalars. So, we have to clarify which elements of sg can 
serve as multiplicators for vectors. Evidently, each element of the center 
Z(sg) of the algebra s~ is suitable for this purpose: for each z e Z(sg), v e 
Dersg, a, b e N, the Leibniz formula holds: 

(ab) = z(v(a)b + av(b)) = (zv)(a)b + a(zv)(b) 

In the sequel we shall confine ourselves to this class of multiplicators, 
that is, DerM will be considered as a Z(s~)-module. So, Z(s~) will be set up 
as the set of scalars: 

s = z ( s~)  

Note that the set S of multiplicators for V may be essentially broader 
than Z(A),  and even noncommutative; we shall not tackle this problem in 
this paper since such a level of  generality is not needed for the account of 
the proposed model. 

3. DIFFERENTIAL A L G E B R A S  

We introduce the notion of a differential algebra as a pair (~ ,  V), V 
C Der~ .  The reasonable restrictions on the choice of V are analyzed in 
this section. 

There are natural classical examples with V =# Der~.  The elements of 
Der~  are the direct generalization of vector fields on smooth manifolds. 
Sometimes, even in the classical (commutative) situation, not all vector fields 
are considered. For example, if the algebra of smooth vector fields on a Lie 
group is studied, it is natural to confine oneself to left-invariant ones. Another 
example is provided by dynamical systems associated with the subalgebras 
of De r ~  with one generator. In classical mechanics, to fix up a subalgebra 
V C De r ~  means to define the virtual shifts of the system. 

Constants. Now let a subset V C_ D e r ~  be set up whose elements are 
thought of as "virtual infinitesimal shifts." The question immediately arises 
of which elements of ~ are invariant with respect to all these shifts. Call 
such elements constants. The set if{ of  constants 

~{, = V C = {k e s ~ l V v  e V vk = O} (3.1) 

is always the subalgebra of sg (proof is straightforward). Clearly, v(ka) = 
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k" va for each v E V, a e ~/, k ~ ~ .  The counterpart of ~s in classical 
mechanics is the algebra of  integrals of a dynamical system. 

We emphasize that the set of constants depends substantially on the 
choice of V. It follows from (3.1) that ffs = V c shrinks when V broadens. In 
particular, when V = Der~/ we call the elements of Ca = (Der~/) c basic 
constants. Ca lies in all other algebras of constants: Ca C V c. When .~ is 
not commutative, Ca is nevertheless commutative and, moreover, is contained 
in the center Z (~)  of ~ .  Note that Ca always contains the elements of  the 
form h o 1, h e ~ .  For any u, v ~ Der,~/, c E Ca, a ~ ,~, 

[cu, v]a = cuv(a) - v(cu(a))  = cuv(a) - v c . u ( a )  - cvu(a) = c[u, v]a 

Therefore 

[cu, v] = c[u, v] = [u, cv] (3.2) 

(the second equality is proved likewise). Hence, D e r ~  may be thought of  as 
the Lie algebra over Ca. The following example shows that Ca may be 
broader than ~t. 

Example  3.1. Let ,.~ be the (commutative) algebra of C~-functions on 
a smooth manifold M. Then Der~/is  the Lie algebra of smooth vector fields 
on M. In this case Ca is the algebra of continuous locally constant functions 
on M. The dimension of Ca is then the number of connected components of 
M. So, Ca = fit only if M is connected. 

Vectors. Consider all such u E Der~  for which V c serves as the set of 
constants; denote it V cC. Clearly V C VCC; however, this inclusion may be 
strict. In the sequel we shall consider such collections V of vectors that are 
uniquely determined by their set of constants: 

V = W c (3.3) 

Such a requirement looks reasonable since in this case V is automatically 
the Lie subalgebra of Der,~. We shall essentially use this condition in the 
sequel (Section 6). 

It follows from (3.3) that we could define the differential algebra as a 
pair (~ ,  ~K) putting V = ~s precisely as was proposed by Geroch (1972). 

4. C O N N E C T I O N  AND CURVATURE 

In this section we generalize connection to noncommutative differential 
algebras and introduce torsion and curvature. 

Connection. In classical differential geometry connection provides the 
means to form the derivative of a vector (field) along another one. We shall 
define it as a V-valued function Vxy of  two arguments x, y ~ V such that it is: 



722 Parfionov and Zapatdn 

1. S-linear by the lower argument: Vzxy = ZVxy. 
2. Ca-linear by the upper argument: Vx(cy) = cV~y. 
3. Derivative with respect to x: 

V~(zy) = x ( z ) ' y  + ZVxy (4.1) 

(recall that S, Ca are the sets of scalars and basic constants, respectively). 

Torsion and Curvature. As in the classical situation, the torsion is defined 
as the V-valued function 

T(x, y) = Vxy - VyX - [x, y], x, y ~ V (4.2) 

It can be checked directly that T is S-bilinear. The curvature is defined 
as follows: 

R(u, x)y = VuV~y - VxVuy - Vc,,~1y (4.3) 

R is the V-valued function of three arguments x, y, u E V. It can be also 
verified that it is S-trilinear. 

Ricci Curvature. In classical geometry the Ricci curvature is formed as 
a contraction of the curvature (4.3). Let us consider it in more detail. Fixing 
up the values x, y in (4.3), we obtain the family of S-linear operators ~xy: V 
-~V, 

~txyU = R(u, x)y (4.4) 

In the case when the notion of trace is meaningful for operators in V, the 
Ricci curvature is defined as the trace of each operator ~ y ,  

Ric(x, y) = Tr ~ y  (4.5) 

The trace problem is to define the trace in the general situation as an S-linear 
scalar-valued functional on some class of linear operators in V such that 

Tr(AB) = Tr(BA) 

When V possesses a basis, the trace is defined as the trace of the 
appropriate matrix. However, even the module of vector fields V may not 
have a basis at all. For instance, in the case of a 2-dimensional sphere 5 ~ 
any smooth vector field on 5O2 has at least one point where it vanishes. Hence 
no pair of vector fields can form the basis (but any three vector fields on 5O2 
are linearly dependent). In classical geometry we are always in a position to 
localize the situation so that at each point  the operator ~txy is represented by 
the matrix in a basis of the tangent space, so that the trace is well defined. 

In the pointless situation all constructions are global. So, to solve the 
trace problem along these lines, the basis needs to be set up. There are two 
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obstacles, functional and algebraic, to doing it. The former is that the module 
V may contain infinitely many independent elements; the latter is that even 
a finitely generated module may not have a basis. A possible way to avoid 
these problems is the implementation of algebraic localization (Atiyah and 
Macdonald, 1969). 

Another approach to the trace problem is inspired by conventional Rie- 
mannian geometry. It is based on the canonical isomorphism 

V | V* ~ ~(V) (4.6) 

where V* is the space of  covector fields, and ~s is the space of linear 
(w.r.t. scalars) operators in V. A linear operator (4.4) represented as the 
element of V | V* is decomposed into the sum of terms of the form v | 
w. The trace of each term is w(v),  hence the trace of the entire operator is 
the sum of appropriate values: for T ~ ~(V) 

T = ~ vi | wi and Tr(T) : ~ Wi(Vi) (4.7) 

In the general situation a more thorough treatment of the dual space is needed. 

5. C O V E C T O R S  

Consider in more detail the algebraic structure of the set of  vectors V. 
First of all, V is the real vector space. Besides, it is equipped with the structure 
of a two-sided S-module, where S is the set of  scalars, which is assumed to 
be the center Z(~)  of the basic algebra ~ :  for each s ~ S, a E ~ ,  v ~ V, 

a = s(va) = ( v ' s ) a  = ( v a ) . s  

Note that the condition (3.3) is essential: otherwise V would not possess the 
S-module structure. 

Covectors .  Now introduce the set of covec tor s  V § as 

V § = Hom(V, .~) 

the set of all S-homomorphisms from the S-module V to M considered S- 
module. V § is also the real vector space and possesses the natural structure 
of an M-bimodule: for each w ~ V § v ~ V, a s M, 

( w . a ) ( v )  = w(v)a 

( a . w ) ( v )  = aw(v)  

The discrepancy between a bimodule and a two-sided module is that 
for arbitrary a ~ ~ ,  w ~ V § wa  4= aw. However, in bimodules the follow- 
ing holds: 

( a w ) b = a ( w b ) ,  a , b  E ~l, w ~ V § 
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Cartan Differentials. To each element a e N a covector da e V § is 
canonically associated: 

da(v) = v(a) (5.1) 

The operator d acts from N to V + (both considered N-bimodules) so that 
the Leibniz rule holds: 

d(ab) = d a ' b  + a . d b  (5.2) 

It is the set of  constants V c which is the kernel of  the operator d. On 
the other hand, not any covector may be of the form da for some a e N. 
For each w e V + define its Cartan differential dw as the following skew- 
symmetric bilinear form on V: 

(dw)(vl,  v2) = vlw(vz) - v2w(v1) - w ( [ v l ,  v21), 131, v 2 ~ V 

When w = da for some a e N ,  dw is necessarily equal to zero. However, 
this is not a sufficient condition. 

De Rham Cohomologies.  A differential form w is called exact  if w = 
da for some a e N, and closed if dw = 0. Since dda = 0, each exact form 
is closed. Both exact and closed forms are submodules of V +, hence their 
quotient can be formed, called the module of  one-dimensional De Rham 
cohomologies  ~ ( V ) .  In the classical case it depends on the topology of the 
underlying manifold (e.g., it is zero for simply connected manifolds). In our 
theory, it remains the structural characteristic of  the differential algebra (N, V). 

The 0-dimensional cohomologies are defined as the algebra V r of  con- 
stants. The closedness condition is now referred to the elements of  N: da = 
0. In virtue of (5.1) that means that va = 0 for each v e V. In the classical 
case ~ ~  is the number of  connected components of  the manifold M (see 
Example 3.1). 

Coupling. There is canonical coupling between V and V§ 

(v, w) = w(v), v �9 V, w e V + (5.3) 

Due to noncommutativity we have to take care of the order of  factors: 

(v, aw) = a(v, w); (v, wa) = (v, w)a, a e N ,  v ~ V, w e V + 

The form (*, *) is S-linear by the first and N-linear by the second argument. 
Thus any v �9 V can be considered as an N-linear form on V+: 

v ~ (v, *) (5.4) 

In the classical theory all N-linear functionals on V § are exhausted by 
that of  the form (5.4), which does not hold in the general case. We shall deal 
with the class of  regular differential algebras for which this also holds. 
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Scalar Covectors. As already mentioned, the set V is the S-module. Its 
dual module is the set V* of all S-valued forms on V. It is natural to call the 
elements of V* scalar covectors. Clearly V* C_ V +, and moreover, V* is the 
S-submodule of V § 

The canonical coupling (5.3) between V and V* makes it possible to 
consider the elements of V as S-linear forms (5.4) on V*. Note that each ~ -  
linear form is S-linear, but not vice versa, hence the regularity requirement 
does not ensure that any S-linear form on V* is induced by some v s V. The 
module V is called reflexive whenever V = V**. 

The Trace Problem Again. Let us return to the problem of representability 
of linear operators by sums of terms w(v). We cannot expect that the formula 
(4.6) will hold for V + since V § is broader than the "real" dual V*. Since V* 
is the submodule of V § (4.6) becomes embedding: 

/e(v) --- v | v* c_ v | v § (5.5) 

whenever V is reflexive: V = V**. In this case the trace is also well-defined 
in accordance with (4.7). 

However, the regularity of (~ ,  V) does not imply the reflexivity of V. 
When V is not reflexive, the elements of ~(V) are approximated by the 
elements of  the tensor product V @ V*. To solve this problem, some additional 
structure on V or ~ must be imposed such as norm or topology. However, 
the trace remains nonuniquely defined: at least up to a constant factor. This 
nonuniqueness may change the form of the Einstein equation even in the 
classical situation (cf. Section 7). 

6. M E T R I C  S T R U C T U R E  

The metric structure is introduced by defining an S-bilinear ~-valued 
symmetric form g(u, v) on V. It immediately induces the operator V ~ V § 
defined for any v s V as v ~ v such that 

v(u) = g(u, v) 

We shall require the nondegeneracy of g; hence the mapping v ~ v will 
be the injection. In the classical situation it is an isomorphism. For general 
differential algebras v ~ v is a mere embedding. 

Gradients. For further purposes (to introduce the Levi-Civita connection) 
we shall use a weaker constraint than the requirement of isomorphism V 
V +. Namely 

Va ~ ~ 3v E V v = da (6.1) 
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We shall call this vector v the gradient of the element a ~ ,~ and denote it 

v = g r a d a  iff v = d a  

The notion of a gradient is unambiguously defined in virtue of the nondegener- 
acy of the metric form g. 

Levi-Civita Connection. In the standard version of general relativity the 
Levi-Civita connection is used. That is, when the metric g is set up, the two 
following conditions for the connection V hold for all u, x, y ~ V: 

Vxy - ~Ty X : [X, y] (6.2) 

u(g(v, X)) = g(V,V, X) + g(v, VuX) (6.3) 

The condition (6.2) means that V is torsion-free: T = 0, and (6.3) means 
that the covariant derivative of g is zero. 

In classical geometry the Levi-Civita connection is uniquely defined by 
the metric and always exists. Returning to the general situation, let us try to 
build the connection associated with the metric g. First suppose it exists. Recall 
how the values of Christoffel symbols are obtained in classical geometry. The 
variables u, v, x are cyclically permuted in (6.3), which yields, using (6.2), 

2g(x, Vvu) = u(g(v, x)) + x(g(u, v)) - v(g(x, u)) 

- (g(u,  [v, x] )  + g(x, [u, v]) - g(v, [x, u]))  (6 .4 )  

To prove the existence, denote by F(u, v, x) the right side of (6.4). Then fix 
up u, v ~ V and consider the function Dvu: ~1 ---> or defined as 

Dvu(a) = F(u, v, grad a) 

It can be checked directly that D~u obeys the Leibniz rule (4.1) and 
annihilates each constant from VC; hence the mapping a ~ D~u(a) is really 
an element of V. Moreover, the mapping (v, u) ~ Dvu satisfies the definition 
of connection (Section 4). 

Now we see the role of the conditions (3.3) and (6.1): they enable the 
validity of the existence theorem for the Levi-Civita connection in differential 
algebras. The uniqueness follows from the nondegeneracy of g. 

7. EINSTEIN EQUATION 

Now we have everything to introduce the point-free counterpart of the 
Einstein equation. Conventional theory postulates the equality between the 
Einstein tensor depending on geometry only and the momentum-energy 
tensor. 
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To form the left side, first introduce the analog of the scalar curvature 
R. In classical geometry R is the contraction of the contravariant metric tensor 
with the Ricci tensor. In differential algebras we have neither contraction nor 
tensors, but only operators. However, we have the trace of operators at our 
disposal. This worked already when the Ricci operator was defined as the 
trace of the Riemann curvature (4.5). 

The Ricci Operator and Scalar Curvature. In (4.5) the S-bilinear form 
Ric(x, y) was defined. To define the scalar curvature, we must be in a position 
to associate the form Ric with an operator ~t in V such that 

Ric(u, v) = g(fftu, v) (7.1) 

Then the trace of fit will be the scalar curvature r 

r = Tr ~ (7.2) 

However, (7.2) is well defined only if (i) this operator ~t exists and (ii) 
will be a trace-class operator w.r.t, the trace Tr. Leaving apart item (ii), 

we suggest a sufficient condition for ~t to exist. For each u E V define the 
covector u~ as 

u~(v) = Ric(u, v) (7.3) 

Now if we require for any u ~ V the existence of v ~ V such that 

u~ = v (7.4) 

the operator ~t can be immediately defined as ~ u  = u~. 

The Einstein Equation. In conventional relativity the operator form of 
the Einstein equation is 

R ~ -  ~RSkl i = KT~, (7.5) 

In differential algebras R~ becomes the Ricci operator ~t and the scalar 
curvature is r. So, everything is now ready to write the analog of (7.5): 

- ~rI = K~" (7.6) 

Note that (7.6) substantially depends on the choice of the trace; however, 
so does (7.5)! It is assumed in the classical case that the trace of the unit 
operator ~ is equal to 4 (the dimension of the spacetime manifold). However, 
we could redefine the trace so that all contractions would be multiplied by 
a constant e~, and the factor 1/2 in (7.5) will become l/2a.  

We reproduce the Einstein equation (7.5) in the form (7.6), which requires 
the introduction of the momentum operator ~,  which acts as follows. Recall 
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that V is interpreted as the set of virtual shifts, so, if v ~ V is associated 
with a shift of the observer, ~v  yields the energy flow seen by the observer. 

8. AN EXAMPLE 

Consider the basic algebra ~ = Mat4(~t) of  square 4 • 4 matrices, and 
let if{ be the subalgebra of ,~ generated by the matrices 

(i~176 (i~176 e l 4 =  0 0 e 2 4 =  0 0 (8.1) 

0 0 0 0 

Denote by eik the matrix having 1 at the (i, k) entry with all other entries 
equal to zero. In accordance with (3.3), form the set V = ~(c. Any derivative 
in Mat,(~/) is inner, that is, each element of v ~ V is associated with a matrix 
v E ~ so that v(a)  - -  va  - a v  = [v, a] for any a ~ ~ .  The Lie operation 
in V is the commutator of appropriate associated matrices. 

It can be checked by direct calculation that V is the 6-dimensional Lie 
algebra spanned on the elements {el3, el4, e23, e24, e33, e34}. The nonzero 
commutators of the basis elements are 

[el3, e33] -- el3; [el3, e34] = el4 

[e23, e33] = e23; [e23, e34] = e24, [e33, e34] = e34 

and other commutators are zero. The set of scalars S of the model will be 
the set of scalar matrices hL where I is the unit matrix and h ~ ~ .  

Suppose that some metric structure on (~ ,  V) is defined: g: V • V ---> 
,~. In accordance with (7.1) the values of g must be the values of the trace, 
i.e., scalars. Hence g(u ,  v) = h i .  

Now we try to build the Levi-Civita connection associated with the 
metric g. To do this, we must check the existence of gradients (6.1). That 
means that for all a E ~ /such  v e V must exist that for all u ~ V 

g(v,  u)  = da (u )  = u(a)  = [u, a] 

Hence the commutator [u, a] is a multiple of the unit matrix. This is possible 
in n o f i n i t e - d i m e n s i o n a l  case. However, it may be possible in infinite-dimen- 
sional space where canonically conjugate variables do exist. Nevertheless, 
torsion-free connections exist in our example, for instance, that defined as 

VuV = UV 

It can be checked directly that the conditions (4.1) are valid due to the fact 
that the scalars are multiples of the unit matrix. 
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This example shows that the affine differential structures can survive 
even on finite-dimensional basic algebras, while the attempts to build the 
noncommutative Riemannian geometry require the infinite dimensionality of 
basic algebras. Moreover, any attempts to substitute spacetime by finitary 
patterns (Dubois-Violette, 1988; Zapatrin, 1993a) can restore either metric 
(Regge calculus) or topology, but not both at once. 

9. S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

We begin with an outline of our main results. 
Models of point-free differential geometries have been proposed (Section 

3) as pairs (,~, V), called differential algebras, which are the noncommutative 
generalization of Einstein algebras (Geroch, 1972). The substantial feature 
of noncommutativity is the discrepancy between the elements of the basic 
algebra (analog of the smooth functions) and scalars (Section 2). 

Luckily, the geometry of affine connection survives in noncommutative 
differential algebras, including the notions of torsion and curvature (Section 
4). It is even possible to introduce "topological" invariants such as De Rham 
cohomologies (Section 5). The conditions for the Ricci form to exist were 
reduced to the trace problem. Possible ways to solve it were shown. 

The conditions for a metric structure to be definable were studied, giving 
rise to the notion of regular differential algebras (Section 6). It happens 
that the Levi-Civita connection (which can always be restored from the 
symmetrical metric form in the classical case) may not exist in the noncommu- 
tative case (example in Section 8): it depends on the possibility to build 
gradients (Section 6). However, if it exists, it is still unique. 

The scalar curvature can also be defined under certain circumstances. 
If it becomes possible, the operator analog of Einstein equation is introduced. 
It is shown that it does not depend on the normalization of the trace. 

The idea to consider vectors as differential operators applied to functional 
algebras, but defined on a broader class of spaces than manifolds, called 
differential spaces, was used to implement spaces with singularities to general 
relativity. Heller et al. (1989) showed that a reasonable definition of differen- 
tial structure can be formulated in terms of a certain algebra ~ of functions 
so that even the analog of Lorentz structure can be introduced (Multarzinski 
and Heller, 1990). In particular, when ~ is an algebra of smooth functions 
on a manifold, the standard differential geometry is restored. 

The approach we suggest can be considered as a reasonable way to 
quantize gravity. The main problem arising here is to find the appropriate 
representations of the basic algebras. With regard to the source of basic 
algebras, one has Wheeler's suggestion to consider logic as pregeometry, 
which could work here. The first step along these lines was made by Isham 
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(1989): the lattice of all topologies over a set was considered, and the analog 
of creation and annihilation operators was suggested. The appropriate algebra 
could be taken as a basic one. Moreover, starting from an arbitrary property 
lattice as background object, one can always build the semigroup [called 
generating (Zapatrin, 1993b)] whose annihilator lattice restores this property 
lattice. Then the algebra spanned on this semigroup could play the role of 
the basic algebra ~ .  

The next step is the spatialization procedure (mentioned in Section 2). 
When a differential structure V and a metric g are set up, the problem arises 
to extract usual (i.e., point) geometry from the triple (~, V, g). To return to 
points, we must consider a subalgebra % C_ ~ such that ~ would be commuta- 
tive (to enable functional representation) and in some sense concerted with 
V and g. We have not yet tackled this problem of eigensubalgebras in detail, 
although it looks like a direct way to reveal events within our scheme. It is 
noteworthy that whenever the triple (~, V, g) is set up, there still may exist 
several functionally representable eigensubalgebras associated with possibly 
nonisomorphic geometries. This means that the observed geometry depends 
on observation, which is in complete accordance with the quantum mechanical 
point of view. 

Finally, we should mention that among various approaches to noncom- 
mutative geometry the closest one to ours is that proposed by Dubois-Violette 
(1988): in our terms, he works only with V = Der~. 
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